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The dynamics of double pipe heat exchangers are governed by systems of 
nonhomogeneous hyperbolic partial differential equations when longitudinal dispersion 
effects are neglected and finite fluid capacitances accounted for. Their non-linear 
behaviour is described with a theoretical Hammerstein model with delays.  The solutions 
are obtained in original variables by the characteristic, Laplace transform and difference 
equation methods (CLD) without numerical quadratures neither convolutions and valid 
for any dependence of heat transfer coefficients and capacitances from input variables. 
These solutions are also valid for generic non-zero initial conditions and any combination 
of stepwise variations of inputs, namely temperatures and flow rates of both fluids. The 
calculations are carried out with the aid of a double grid framework on the physical 
domain in order to allow for an arbitrary selection of sampling time and spatial 
coordinates. The results of the calculations are compared with those obtained by the finite 
element method (FEM) and by the numerical inversion of the Laplace domain solutions.  
The solutions compare very well with rigorous solutions. 
 
1. Introduction 
The dynamics of heat exchangers have been the objective of early studies on transient 
behaviour of industrial equipment (Klinkenberg, 1954; Mozley, 1956; Koppel, 1962; 
Ray, 1966). Studies have been continued on improving previous results (Tan and 
Spinner, 1978;  Steiner, 1987 ) and emphasising new achievements  (Yin and Jensen, 
2003 ), mainly in rigorous and approximate analytical models (Tan and Spinner, 1991). 
Though more difficult, solutions have been found in the case of countercurrent 
arrangement (Lachi, et al. 1997; Malinowsky and Bielsky, 2004) and on the hypothesis of 
flow maldistribution (Xuan and Roetzel, 1993). 
The scientific literature report also semi-analytical methods (Tan and Spinner, 1984) and 
several numerical methods. The latter are based on the Finite Difference Method and the 
Method of Characteristics.  The semi-analytical method (Tan and Spinner, 1984)  is also 
based on the method of characteristics but the solution is obtained without iterations. 
Other studies, purposely developed for countercurrent mass transfer operations (Hwang, 
1987) can also be valid for this case thank to the equivalent or equal, in dimensionless 
variables, resulting system of partial differential equations and boundary conditions (Tan 
and Spinner, 1984). More studies concern with changes in fluids temperatures, less 
studies with flow rate variations.  
The present study is concerned in extending previous results and finding solutions valid 
for generic initial conditions and arbitrary combination of inputs without the cumbersome 
application of numerical quadratures neither convolutions. The objectives are reached 
with the combined application of the characteristic, Laplace transform and difference 



equation methods (Evangelista, 2005). An explicit marching solution is obtained at each 
spatial location  by antitransforming with the aid of difference equations and equivalent 
pulse transfer functions with zero-order hold element (Ogunnaike and Ray, 1994). One 
numerical solutions has also been developed and implemented for validation purposes, 
applying the finite element methods, FEM (Ames,1977) to time dependent problems. The 
resulting systems of ordinary differential equations are integrated with an implicit initial 
value integrator (Shampine and Reichelt, 1997). Another solution employed in the 
validation procedure has been developed. This solution is analytical in the Laplace 
domain and valid for any combination of step variations of inputs. However the solutions 
have been found numerically with an algorithm developed by Hollenbeck (1998). 
 
 2. Theory 
Basic equations that govern the dynamic behaviour of this  apparatus can be found by 
making a heat balance on a differential element dz as shown in Fig. 1a.  In order to 
simplify the derivation the following assumptions are made: 
1) The flow of both streams is highly turbulent for the resistance to the transfer of 

heat to be concentrated in thin boundary layers next to the wall ; 
2) Physical, transport properties and heat transfer coefficients may vary arbitrarily 

with input variables; 
3) Limited temperature differences so physical, transport properties and transfer 

coefficient  can be considered constant with the axial dimension; 
4) Wall resistance and capacitance negligible; 
5) Axial temperature gradients much lower than the radial gradients in the boundary 

layers, so the diffusive axial transport be neglected in comparison to the 
convective transport; 

6) Cross section and heat transfer areas are constant; 
7) Entry length negligible in comparison to the length of the apparatus. 

 
The results are given by the following system of partial differential equations:  
 
 

 
Fig. 1. Apparatus and time domain variables (a),Hammerstein model block diagram (b). 
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with split boundary conditions: 
 
for     z = 0  and  t  > 0          )0,(tf t    = )(t

0
f t              (3) 

for     z = L  and  t  > 0          )0,(TF t  = )(T
L
F t                         (4) 

 
and initial conditions: 
 

for 0 ≤  z  ≤  L  and  t  = 0   ),0(tf z  = )(tf z               (5) 
 
            ''                    ''         ),0(TF z  = )(TF z                      (6) 

 
where )(tγ and )(tη are quantities easily derivable. 
The time dependence of parameters γ  and η  indicate that they can depend in any, even 

nonlinear, way from input variables )(T
L
F t ,  )(t

0
f t , )(vf t , )(VF t  and their combinations.  

The above  formulation leads to a semilinear system of equations. So the first step is to 
tackle it with a combination of characteristic and Laplace transform methods 
(Finlayson, 1992). 
 
2.1 Characteristic-Laplace transform-Difference method 
The characteristic method is particularly useful for converting hyperbolic partial 
differential equations into systems of ordinary differential equations. In case of 
semilinear problems with time dependent coefficients the characteristics are straight.  
Solutions can be found also in the Laplace domain (Rhee  et al., 1986; Finlayson, 
1992). In this study an explicit type marching solution is found. This method can be 
applied to the original system (1) - (6) as well as to that in deviation variables. With 
absolute formulations, Eqs. (1) - (6), the characteristic method gives: 
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where characteristics α and β have the following equations on a t, z reference frame: 

 
t – z/vf(t)   = const              (9) 

 
t + z/VF(t) = const              (10) 

 



As assumed before regarding input types, parameters γ ,  and η are constant within the 
step, as well as vf(t) and VF(t). Should any of their variations be faster, appropriate 
sampling time must be chosen accordingly.  So Laplace transforms of Eqs. (7) and (8), 
assuming non zero initial conditions and solved for the unknown: 
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Eqs. (11) and (12) are solutions for the state variables of the system reported in Fig. 1b. 
The output variables tf(t,z) and TF(t,z)  are calculated afterwards in the following way. 
Denoting Δ t the time increment, Δ z the spatial mesh size, i the current time index and 
k the spatial index, and actually assuming that the forcing term is an arithmetic average 
between time i and (i-1) (Tan and Spinner, 1984), Eqs. (11) and (12) can be 
antitransformed (Ogunnaike and Ray, 1994) to: 
 
tf(i,k) = φi tf(i-1,k-1) + (1- φi )[TF(i,k)+TF(i-1,k)]/2           (13) 

 
TF(i,k) = ϕi TF(i-1,k) + (1-ϕi )[tf(i,k)+tf(i-1,k)]/2           (14) 

 
where: 
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Solving Eqs. (13) and (14) for the unknown tf(i,k): 
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is obtained. Eq. (17) contains quantities of one previous time step only , )(t0

f i = )(t0
f t , 

vf(i) =vf(t) and VF(i) =VF(t). Also time and input dependent parameters are calculated 
explicitly at each time step. The other unknown TF(i,k)  can be calculated with an 
equation similar to Eq. (17) or alternatively with Eq. (14). However this marching 
solution is valid for internal points only. Different situations arise at the two boundaries.  
All of them can be handled with a procedure soon after described. The influence of 
inputs vf(t) and VF(t) is sensed through Eqs. (9) and (10) and , indirectly, through Eqs. 
(15) and (16). 



However Δ t and Δ z cannot be independent. Fixed the spatial grid with mesh Δ z, Δ t 
must be equal to: 

 
Δ t  = Δ z / [vf(t) + VF(t)]               (18) 
 
Referring to Fig. 2, the solutions at internal points other than those at the grid points can 
be calculated by defining a continuous parameter λ which is function of  t, current time 
between ti and ti-1. Then Eqs. (13) and (14) applied two times allow to calculate 
explicitly the unknown ),(T

1
F zt  along the α characteristic as: 
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The other unknown ),(t
1
f zt  can be calculated as well: 
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The same equations can be applied to point 7 and similar equations, omitted for brevity, 
can be derived for point 3.  From points 1 and 3 point such as 2 can be calculated from 
the couple equations (13) and (14). Other points can be resolved, such as 4 and 6 and 
from them point 5; from point 5 and 7 point 8 can be known. Of course appropriate 

 
values of the parameter λ must be used. In this way continuity is recovered and t and z 
coordinate can be chosen at will covering the whole domain including end points. 
Unfortunately natural boundary conditions at boundaries between patches, that is equal 
function value and first order derivatives in two neighbours patches, cannot be imposed. 
However the guarantee that a new steady state solution will be achieved would enforce 
the mentioned conditions to be satisfied to a great extent. 



The transitories present discontinuities in 0th derivatives during the first developing wave 
of both unknowns if )(t

0
f s and )(T

L
F s  are step inputs respectively and in 1th order 

derivatives of any of the two if only the other is step varying. The following waves 
present always discontinuities in 1th order derivatives only. Only discontinuities in 1th 

order derivatives are also present for step variations of the other two inputs FF(t) and Ff(t) 
even in the first waves.  
 
3. Results and Discussion 
In this section I will report some results of preliminary calculations performed with the 
procedure developed in this work. The calculations obtained in the same apparatus and 
operating conditions by the Numerical Laplace Antitransform Method (NLAM), and by 
the Finite Element Method (FEM) are also reported for comparison purposes. The 
apparatus dimensions are reported in Table I, while steady state operating conditions are 
reported in Table II. The latter can be arbitrarily chosen without introducing any type of 
errors. For simplicity sake fluid properties have been kept constant for both cold and hot 
fluids and equal to that of water and the value of Rd = 0. The heat transfer coefficients, 
instead, are let to vary according to literature relationships, in this case the same as that 
reported in (Tan and Spinner, 1978), that is, dependence only on velocities through the 
exponent nf equal to 0.8 for the cold fluid and nF equal 0 for the hot fluid.  
Some sample calculations have been performed varying all inputs at the same time. The 
variation of the inlet temperature of the cold fluid has been limited to - 10 °K while that 
of the hot fluid has been fixed to – 20 °K. Bigger variations of the fluid flow rates have 
been tested, that is 2.04⋅10-4 m3 / s for the cold fluid, which is almost four times that at 
steady state and that of the hot fluid has been set to 2.01⋅10-4  m3 / s which is nearly 
double that at steady state. Anyhow it should be pointed out that the solutions are valid 
for any variation of inputs and not restricted as in linearized models. However the results 
should be checked for fluid properties and heat transfer coefficients variations along the 
apparatus if higher temperature variations would be experienced. Fig. 3 shows 
threedimensional plots of the temperatures of the cold fluid obtained by the four 
calculation methods early mentioned. As can be seen the agreement between the four 
methods is satisfactory for engineering calculations, as outlined in e) and f) that represent 
a plot of the errors, differences between c) and a) surfaces and c) and d) surfaces 
respectively. Bigger discrepancies (localized spikes) are noticed in e) along disturbances 
paths because of step variations of inputs and because the prescribed (fixed) grid is not 
able to follow disturbances waves, unless finer grid meshes are used. Bigger 
discrepancies are noticed  in the comparison with FEM because the latter introduce 
numerical dispersion, spurious oscillations and 1th order derivatives mismatch. 
Plots of the temperatures of the hot fluid are less interesting because successive waves 
vanish more rapidly and omitted for brevity. 
 
 Table I. Apparatus dimensions. 
 Di  =  1.2 ⋅10-2  m d0  =  7.70⋅10-2 m  di  = 6.56⋅10-2 m L    =    20 m 

 
 Table II. Steady state conditions 

 t
0
fs  = 288   °K  T

L
Fs   = 325  °K 

 Ffs  = 5.50⋅10-5 m3 / s FFs  = 1.08⋅10-4 m3 / s 
his  = 0.2  Kcal / s m2 °K h0s = 0.1  Kcal / s m2 °K 

 



4. Conclusions 
A new method for simulating dynamics of double pipe heat exchangers has been 
developed and validated. It consists of explicit marching procedure for calculating 
transitory profiles of cold and hot fluid temperature generated when disturbances in 
temperature and flow rate of both fluids enter the equipment. It has been developed 
combining the main features of characteristic, Laplace transform and difference equation 
methods. Accepts stepwise variation of any combination of inputs. Non-zero generic 
initial conditions and any time dependence of parameters can be easily handled. 
 

 
 
Fig. 3. Temperature profiles and errors of the cold fluid when the exchanger is operating 
           with the new conditions reported in c): a) Numerical Laplace, b) Characteristics 
          with natural coordinates, c) Characteristics with prescribed coordinates, d) Finite 
           Element Method, e) c – a, f) c – d. 
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